Math 120A: Homework 7

Due: November 21, 2014

1. Read sections 5.1-3 and 5.6 in Pressley.
2. Do problems 4.5.1, 4.5.3, 5.1.2, 5.1.3, 5.2.2*, 5.2.3, and 5.3.3 in Pressley.
3. Additional context for derivatives. The notion of derivative introduced in class is a generalization of derivatives of maps $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. We say that f is differentiable at \mathbf{p} if there is a linear map $T_{\mathbf{p}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with the property that

$$
f(\mathbf{p}+\mathbf{v})=f(\mathbf{p})+T_{\mathbf{p}}(\mathbf{v})+\|\mathbf{v}\| \epsilon(\mathbf{v})
$$

where $\epsilon(\mathbf{v})$ is a function such that $\epsilon(\mathbf{v}) \rightarrow 0$ as $\mathbf{v} \rightarrow 0$.

- Show that the ordinary derivative of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies this definition.
- Show that if f is differentiable at \mathbf{p}, then the matrix of $T_{\mathbf{p}}$ is the Jacobian of f.
- The familiar theorem that differentiability at a point implies continuity at that point remains true for higher-dimensional derivatives. Use this and the last problem of Homework 1 to argue that the existence of the Jacobian at \mathbf{p} does not imply differentiability at \mathbf{p}.
*Algebra background for 5.2.2: In class we mentioned the diagonalization theorem, which (inter alia) implies that if A is a symmetric $n \times n$ matrix, then there is an orthogonal matrix P such that $P A P^{t}$ is diagonal. In fact the proof provides more information about P and $P A P^{t}$. Let $F(\mathbf{v})=A \mathbf{v}$ be the linear transformation whose matrix with respect to the standard basis for \mathbb{R}^{n} is A. One shows that there is an orthonormal basis $\mathcal{B}=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ for \mathbb{R}^{n} consisting of eigenvectors of F. Then if the columns of P^{t} be the elements of this basis, the matrix $P A P^{t}$ is the matrix of F with respect to \mathcal{B}. In particular $P A P^{t}$ is diagonal. Exercise: What must the diagonal entries of $P A P^{t}$ be?

